Verticillium wilt in New Zealand vines

The disease

Verticillium wilt is a systemic fungal disease of grapevines: that is, the disease-causing agent is found inside the vine, usually in old wood such as the trunk or permanent cordons, as opposed to the leaves. The disease is caused by species of fungus belonging to the genus Verticillium, including Verticillium dahliae and Verticillium albo-atrum. In Verticillium wilt, the fungus invades and blocks the xylem vessels – the woody tissue that conducts water upwards into the vine. Symptoms are similar to acute water stress.

Verticillium wilt fits into the category known as grapevine trunk diseases. Although it has been previously reported as being present in New Zealand, the disease has not been a common occurrence in this country. Certainly, in all our years of work with vine diseases, Verticillium wilt did not pop up on Linnaeus laboratory’s “radar” until 2005/2006 – despite the fact that internal symptoms (inside the wood) are quite distinctive. Most of the examples we have encountered over the last two seasons have been in younger vines on new developments in the Marlborough region, and it may be a result of developments being made on sub-optimal sites. It is our impression that the disease is now on the increase in some parts of the country.

How it spreads and infects vines

Verticillium wilt is mainly a soil-borne disease: the fungus usually enters the grapevine through one or more of the roots by either direct penetration or through wounds, and then works its way upwards into the trunk. The disease favours cool climates and cooler soils.

Typically found on sites that can be categorised as high risk, Verticillium wilt prospers on:
- poorly drained sites
- sites with high water tables, or heavy wet soils
- sites prone to periods of standing water.

The disease often occurs where previous land use has included:
- arable or cool-season vegetable crops, such as peas or potatoes
- fruit trees
- lucerne
- berry fruits
- tobacco
- hops
- kiwi fruit
- pasture with weeds.

While Verticillium wilt is commoner in heavier soils and on the high-risk sites described above, the disease can also occur on sites that would not be classified as high risk. Affected vines are often seen in small groups or clusters within the vineyard, indicating that the disease probably spreads slowly from vine to vine if conditions are favourable. Nematodes have been implicated in the spread of these fungi.

Symptoms

By the time the fungus has worked its way up into the trunk of the vine, symptoms start to appear. The fungus often blocks only a part of the xylem, and symptoms will then be confined to a section or even one-half of the vine.

Symptoms are similar to acute water stress: fruit shrivels, and leaves dry out and die but usually remain attached to the shoot (see Figure 1). Leaf symptoms typically begin with an inter-veinal yellowing before the leaves turn necrotic and die.

Affected vines may suddenly collapse with a full load of fruit in mid-summer heat, when water demands are at their highest. Vines that undergo full or partial collapse in mid-

Fig. 1. This vine has collapsed during the first half of the season. Note that the leaves are dead and shrivelled, but still attached to the shoots.

Fig. 2. This vine was badly affected last season and is showing a very slow start this season. Note reduced shoot growth and pale foliage.
Control

Drainage is very important in the control of this disease. If drainage is poor, improvements must be made.

Removal of affected vines and as much of the root-mass as possible will help, although some fungal inoculum will be left in the soil – this inoculum can potentially re-infect replacement vines.

Replacement vines should have the planting holes seeded with Trichoderma or Mycorrhizae preparations before planting.

Mycorrhizae are naturally occurring symbiotic fungi that inhabit the roots of many different plants and are known to assist in the uptake of nutrition. They are considered to be a potentially useful treatment against fungal diseases, especially root-borne ones, probably by simply improving the overall health of the plants.

Trichoderma are also naturally occurring fungi, and some species are known to be predatory on other fungi. They attack and eat other fungi in the root-zone and are thought to provide protection by removing potentially pathogenic fungi in this manner.

In some instances, growers have reported a remission of symptoms after drenching the base of affected vines with Carbendazime fungicides, such as Prolific® or Protek® and watering the application in to get the fungicide down to the root-zone. How long symptom remission will last when achieved in this way is not known. If vines are to be treated, it is essential to remove the fruit. This will help to reduce any stress on the vines, but is also recommended because such chemical applications are unlikely to be an approved registered use. Wineries are likely to be very concerned about potential chemical residues in the fruit. Check with the winery before proceeding.

Another treatment that may be worth trying, although its efficacy remains unproven for Verticillium wilt in grapevines, is the use of Phosphorous acid preparations. These preparations have proven action against Phytophthora species in avocados and have been extensively trialled against the fungus Phaeonomiella chlamydosporum, the causative agent of Petri disease (previously known as “Black Goo”) in grapevines.

Based on first principles, the use of Phosphorous acid preparations against other trunk diseases, including Verticillium wilt, may therefore be worth trying, although its effectiveness certainly has not been proven. Phosphorous acids are commonly used in foliar fertiliser applications on grapevines and are unlikely to cause harm unless used to excess.

Some wineries are concerned about the possibility that the excess use of phosphorous acid preparations may result in residues called “Phosphonites” occurring in the wine. Wineries should therefore be consulted if a phosphorous acid regime involving repeated applications within one season is planned.

Forward planning

If you are considering establishing a vineyard on a site that fits into the “high risk” category, soil tests for fungal inoculum should be done before final development decisions are made. Soil fumigation is not effective at combating Verticillium wilt. Crop rotation and fallowing is likely to be much more effective. A few years of rotation through non-susceptible host crops is recommended. Drainage should be optimised, and care should be taken in the selection of root stocks.

Crop Protection From Birds and Frost

The ‘Eagle’ and the Budget Model ‘Falcom’ Designed for Efficient Application and Retrieval of all types of Bird Netting covering Grape vines, and Fruit Trees. Sensitive Hydraulic Snot Protection and Speed Control.

TWO MODELS OF EACH MACHINE AVAILABLE

The ‘Frost Stoppa Scarva 1000’ PTO Portable 1-3 Hectares
The ‘Frost Stoppa Scarva 2000’ Electric Fred 1-4 Hecteres

Tatura Engineering P/L Contact Alex Carter
PH. 0408 241 998 or E-mail acarter@tateng.com.au
Visit Tat-Eng website www.tateng.com.au